OEM pressure transducer Thin-film technology Model TTF-1

WIKA data sheet PE 81.16

Applications

- Applications with limited mounting space
- Hydraulic applications
- Assembly for pressure transmitters, pressure switches and digital pressure gauges

Special features

- Measuring ranges 0 ... 10 bar to 0 ... 1,000 bar
- Non-linearity < 0.5 % of span
- Wetted parts from stainless steel
- Medium temperature -40 ... +125 °C
- Output signal in mV/V

OEM pressure transducer model TTF-1, with various process connections

Description

Robust sensor element

The cylindrical measuring cell, as standard, is made from robust stainless steel and as a result exhibits high overpressure and burst pressure safety. For specific applications suitable materials are optionally available.

Using thin-film technology a Wheatstone measuring bridge is applied to the diaphragm of the measuring cell. Thin-film technology, compared to other technologies, enables a particularly high long-term stability, since the bonding is made at an atomic level.

The model TTF-1 pressure transducer is made up of a dry measuring cell, which is welded directly to the pressure connection. As a result, the TTF-1 has no weak points as would occur, for example, when sealing with O-rings or adhesive bonding.

Customer-specific designs

A large selection of standard designs is already available and is manufactured on a flexible production line. This flexibility in manufacturing enables us to offer custom designs from a minimum order quantity of 1,000 pieces.

Technical aspects

The measuring cell is temperature compensated between -40 ... +100 $^{\circ}$ C and offers a linear output signal.

Since the output signal is available as the pure bridge signal, the final accuracy of the customer application can be set by the customer via appropriate compensation of the zero point and span offsets.

Page 1 of 3

Measuring ranges

Relative pressure [bar]				
Measuring range	0 10	0 16	0 25	
Overpressure limit	20	32	50	
Burst pressure	100	160	250	
Measuring range	0 40	0 60	0 100	
Overpressure limit	80	120	200	
Burst pressure	400	550	800	
Measuring range	0 160	0 250	0 400	
Overpressure limit	320	500	800	
Burst pressure	1,000	1,200	1,700	
Measuring range	0 600	0 1,000		
Overpressure limit	1,200	1,500		
Burst pressure	2,400	3,000		

Other measuring ranges on request.

Vacuum tightness

Yes

Output signals

Measuring range [bar]

0 ... 10
 1.4 ... 2.6 mV/V
 0 ... 16 and 0 ... 25
 1.5 ... 2.5 mV/V
 0 ... 40 up to 0 ... 160
 1.6 ... 2.4 mV/V
 0 ... 250 up to 0 ... 1,000
 1.7 ... 2.3 mV/V

Voltage supply

Power supply

DC 6 ... 10 V

Reference conditions (per IEC 61298-1)

Temperature

15 ... 25 °C

Atmospheric pressure

860 ... 1,060 mbar

Humidity

45 ... 75 % relative

Power supply

DC 10 V

Mounting position

Any

Time response

Settling time (10 ... 90 %)

< 1 ms

Accuracy data

Zero offset

max. ± 0.5 mV/V

Bridge resistance

 $6.5 \pm 1.3 \, k\Omega$

Temperature error

Compensated temperature range: -40 ... +100 °C

Mean temperature coefficient

■ Zero point: ±0.1 % of span/10 K■ Span: ±0.1 % of span/10 K

Non-linearity, typical

Measuring range [bar]

0 ... 10 +0.50 % of span **0** ... 16 +0.40 % of span **0** ... 25 +0.40 % of span **0** ... 40 +0.35 % of span **0** ... 60 +0.30 % of span **0** ... 100 +0.25 % of span **0** ... 160 +0.22 % of span **0** ... 250 +0.20 % of span **0** ... 400 +0.18 % of span +0.15 % of span **0** ... 600 ■ 0 ... 1,000 +0.12 % of span

Hysteresis

 \leq 0.1 % of span

Long-term stability

≤ 0.2 % of span/year

Operating conditions

Permissible temperature ranges

Medium: -40 ... +125 °C Ambient: -40 ... +100 °C Storage: -40 ... +100 °C

Service life

> 100 million load cycles

Process connections

Many different process connections are available on request. Examples are listed under "Dimensions in mm".

Electrical connections

Available connections	Standard lengths
Wire with JST connector	32, 65, 87 mm
Wire with FCI blade terminal	120, 140 mm drilled
Wires	60, 80, 110, 170, 220, 340 mm

Others on request

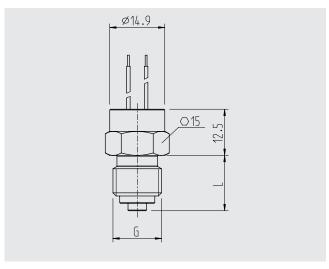
Pin assignment

Connection	U+	U-	S+	S-
Wires with	Pin 1	Pin 2	Pin 3	Pin 4
JST connector	red	blue	white	black
Wires with FCI blade terminal	Pin1	Pin 2	Pin 3	Pin 4
	black	red	white	blue
Wires	black	red	white	blue

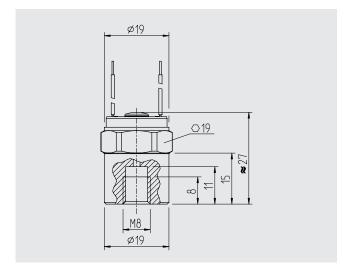
Electrical protective measures

High-voltage strength AC 500 V

Insulation resistance $\geq 300 \ M\Omega$


Materials

Wetted parts


Stainless steel, other materials on request

Dimensions in mm

Example designs

G	L
G 1/4 B per EN 837	15
3/8-24 UNF	10

Ordering information

Measuring range / Electrical connection / Process connection

© 2012 WIKA Alexander Wiegand SE & Co. KG, all rights reserved.

The specifications given in this document represent the state of engineering at the time of publishing. We reserve the right to make modifications to the specifications and materials.

WIKA data sheet PE 81.16 · 09/2013

Page 3 of 3

info@wika.com www.wika.com