Tension/compression load cell With thin-film technology up to 100 kN Models F2301, F23C1, F23S1

Applications

- Hoists, cranes
- Screw down forces in machinery
- Process automation
- Mechanical engineering and machinery

Special features

- Stainless steel
- Integrated amplifier
- Small temperature drift

■ High long-term stability, high shock and vibration resistance
■ Good repeatability, easy to install

Description

Load cells with welded-in thin-film sensors are designed for the measurement of static and dynamic pull and/or push forces in various applications.

Load cells are suitable for tough operating requirements and harsh environmental conditions. They are maintenance-free and can also be mounted in hard-to-reach locations.

Tension/compression load cell
 Models F2301, F23C1, F23S1

mounting spaces is also possible. Because of the variety of output signals, these load cells can be used in many application areas.

ATEX/IECEx (optional)

- Mining
- Chemical and petrochemical industries
- Dedusting and filtration units

Only equipment and protective systems with the corresponding certification and markings are to be put into operation in potentially explosive areas. Our force transducers with a thin-film measuring cell and integrated amplifier now have approval according to directive 94/9/EC in equipment group II (non-mining products), category 2G for zones 1 and 2 (gases). Other zones on request.

SIL 3 (optional)

For theatre and stage design:

- Above-stage machinery
- Below-stage machinery
- Point hoists

In cooperation with the TÜV Süddeutschland a special security electronics has been developed for theatre and stage applications. It fulfils security standard SIL 3 with a 2-channel PC control in connection. This international security standard for systems and processes is based on the standards IEC 61508 and 61511. The latter is used for ascertaining risk potentials of (engineering) systems. Depending on the potential existing risk a risk reduction has to be made. If automation components are used for that, they have to fulfil the demands of IEC 61508. Both standards subdivide systems and risk reducing actions in four security steps: SIL 1 ... SIL 4 (Safety Integrity Level) - from small up to very high risks. If persons are allowed to stay under hanging loads, e.g. in theatres, security level 3 (SIL 3) is valid.

UL-Certification (optional)

Load cells are also available with UL approval. FM and CSA Approval submitted.

Safety approval (optional)

Load cells are now available in versions in accordance with the requirements for functional safety per 2006/42/ EC Machinery Directive. This is only valid in combination with a safe control unit such as the tecsis ELMS1 overload protection.

Measuring ranges

Tension and compression forces from $0 \ldots 1 \mathrm{kN}$ up to $0 . . .500 \mathrm{kN}$

Accuracy

0.2% of F.S.

Output signals

4 ... 20 mA , 2- or 3-wire
DC 0 ... 10 V, 3-wire
CANopen ${ }^{\circledR}$

ATEX/IECEX (optional)

According with EN 60079-0:2012 and
EN 60079-11:2012 (Ex ib)

IECEx-Zulassung (optional)

According with IEC 60079-0:2011 (Ed.6) and
IEC 60079-11:2011 (Ed. 6) (Ex ib)

SIL 3 (optional)

According with EN 62061:2005

UL-Zulassung (optional)

According with UL 61010-1 and CSA C22.2 NO.61010-1
Specific information
Counter nuts included

Technical data in accordance with VDI/VDE/DKD 2638

Models	F2301	F23S1
Rated force $\mathrm{F}_{\text {nom }}$	From 1 kN	
Force limit F_{L}	$150 \% \mathrm{~F}_{\text {nom }}$	
Breaking force F_{B}	$>300 \% \mathrm{~F}_{\text {nom }}$	
Relative linearity error $\mathrm{d}_{\text {lin }}{ }^{1}{ }^{\text {) }}$	$\pm 0.2 \%$ of F.S.	
Relative reversibility error v	$0.1 \% \mathrm{~F}_{\text {nom }}$	
Relative creep, 30 min . at $\mathrm{F}_{\text {nom }}$	$\pm 0,1 \%$ of F.S., $-20 \ldots+80^{\circ} \mathrm{C}$	
Service life	20 Years	
Permissible oscillation stress F_{rb}	$\pm 50 \% \mathrm{~F}_{\text {nom }}$ (in accordance with DIN 50100)	
$\begin{aligned} & \text { Nominal deflection (typ.) } \mathrm{s}_{\text {nom }} \\ & \square<10 \mathrm{kN} \\ & \square<100 \mathrm{kN} \end{aligned}$	$\begin{aligned} & <0.02 \mathrm{~mm} \\ & <0.2 \mathrm{~mm} \end{aligned}$	
Rated temperature $\mathrm{B}_{\text {T, nom }}$	$-20 \ldots+80^{\circ} \mathrm{C}$	
Operating temperature $\mathrm{B}_{\mathrm{T}, \mathrm{G}}$	$-30 \ldots+80^{\circ} \mathrm{C}$ (optional -40 $\ldots+80^{\circ} \mathrm{C}$)	$-30 \ldots+80^{\circ} \mathrm{C}$
Storage temperature $\mathrm{B}_{\mathrm{T}, \mathrm{S}}$	$-40 \ldots+85^{\circ} \mathrm{C}$	
Temperature effect on - characteristic value TK_{c} - zero signal TK_{0}	0.2 \% $\mathrm{Fnom}_{\text {m }} / 10 \mathrm{~K}$	
Vibration resistance	$20 \mathrm{~g}, 100 \mathrm{~h}, 50 \ldots 150 \mathrm{~Hz}$ in accordance with DIN EN 60068-2-6	
Protection type	IP67 in accordance with EN/IEC 60529	
Noise emission	DIN EN 55011	
Noise immunity	In accordance with DIN EN 61326-1/DIN EN 61326-2-3 (optional EMC-strengthened versions)	
Electrical protection	Reverse voltage, overvoltage and short circuit protection	
Output signal - Signal type	4 ... $20 \mathrm{~mA}, 2$-wire, 4 ... $20 \mathrm{~mA}, 3$-wire or DC $0 \ldots 10 \mathrm{~V}$, 3 -wire (Optional redundant signal) CANopen ${ }^{\circledR}$ Protocol in accordance with CiA 301, device profile 404, communication services LSS (CiA 305), configuration of the instrument address and baud rate Sync/Async, Node/Lifeguarding, heartbeat; zero and span $\pm 10 \%$ adjustable via entries in the object directory	Redundant, opposing $4 \ldots 20 \mathrm{~mA} / 20 \ldots 4 \mathrm{~mA}$ Versions in accordance with requirements for functional safety per 2006/42/EC Machinery Directive
- Current consumption	```Current output 4 ... 20 mA 2-wire: signal current Current output 4 ... 20 mA, 3-wire: < 8 mA Voltage output:<8 mA CANopen®:<1W```	Current output $4 \ldots 20 \mathrm{~mA}$: signal current
- Supply voltage	DC $10 \ldots 30 \mathrm{~V}$ for current output DC $14 \ldots 30 \mathrm{~V}$ for voltage output DC $12 \ldots 30 \mathrm{~V}$ for CANopen ${ }^{\circledR}$	DC $10 \ldots 30 \mathrm{~V}$ for current output
- Burden	$\leq($ UB-10V)/0.024 A for current output $>10 \mathrm{k} \Omega$ for voltage output	\leq (UB-10V)/0.020 A (channel 1) for current output \leq (UB-7V)/0.020 A (channel 2) for current output
- Response time	$\leq 2 \mathrm{~ms}\left(\text { whitin } 10 \ldots 90 \% \mathrm{~F}_{\text {nom }}\right)^{2}{ }^{2}$	
Electrical connection	Circular connector M12 x 1, 4-pin/ CANopen ${ }^{\circledR} 5$-pin	2-connector variant, 4-pin
Material of measuring device	Stainless steel corrosion-resistant, ultrasonically	ested 3.1 material (optional 3.2)
Optional	Certificates, strength verifications, 3D-CAD files	STEP, IGES) on request

[^0]| Models | F23C1 version ATEX/IECEx EX ib¹) | F23C1 version SIL 3 in accordance with EN 62061:2005 |
| :---: | :---: | :---: |
| Rated force $\mathrm{F}_{\text {nom }}$ | From 1 kN | |
| Force limit F_{L} | $150 \% F_{\text {nom }}$ | |
| Breaking force F_{B} | $>300 \% \mathrm{~F}_{\text {nom }}$ | |
| Relative linearity error $\mathrm{d}_{\text {lin }}$ | ± 0.2 \% of F.S. | |
| Relative reversibility error v | 0.1 \% $\mathrm{F}_{\text {nom }}$ | |
| Relative creep, 30 min . at $\mathrm{F}_{\text {nom }}$ | | |
| Service life | 20 Years | |
| Permissible oscillation stress F_{rb} | $\pm 50 \% \mathrm{~F}_{\text {nom }}$ (in accordance with DIN 50100) | |
| $\begin{aligned} & \text { Nominal deflection (typ.) } \mathrm{s}_{\text {nom }} \\ & <10 \mathrm{kN} \\ & <100 \mathrm{kN} \end{aligned}$ | $\begin{aligned} & <0.02 \mathrm{~mm} \\ & <0.2 \mathrm{~mm} \end{aligned}$ | |
| Rated temperature $\mathrm{B}_{\mathrm{T} \text {, nom}}$ | $-20 \ldots+80^{\circ} \mathrm{C}$ | |
| Operating temperature $\mathrm{B}_{\mathrm{T}, \mathrm{G}}$ | Operating temperatures see operating instruction | $-30 \ldots+80^{\circ} \mathrm{C}$ |
| Storage temperature $\mathrm{B}_{\mathrm{T}, \mathrm{S}}$ | $-40 \ldots+85^{\circ} \mathrm{C}$ | |
| Temperature effect on characteristic value TK $_{c}$ zero signal TK 0 | 0.2 \% F $\mathrm{nom}^{\text {/ }} 10 \mathrm{~K}$ | |
| Vibration resistance | $20 \mathrm{~g}, 100 \mathrm{~h}, 50 \ldots 150 \mathrm{~Hz}$ in accordance with DIN EN 60068-2-6 | |
| Protection type | IP67 in accordance with EN/IEC 60529 | |
| Noise emission | DIN EN 55011 | |
| Noise immunity | In accordance with DIN EN 61326-1/DIN EN 61326-2-3 (optional EMC-strengthened versions) | |
| Electrical protection | Reverse voltage, overvoltage and short circuit prot | |
| Output signal
 Output signal (characteristic value) C | $4 \ldots 20 \mathrm{~mA}$, 2-wire | $4 \ldots 16 \mathrm{~mA}, 2$-wire, DC 2 ... 8V, 3-wire ${ }^{3)}$ |
| - SIL Shifts | - | $\begin{aligned} & 4 \mathrm{~mA}, 2 \text {-wire } \\ & \text { DC } 2 \mathrm{~V},- \text { - } \text {-wire 3) } \end{aligned}$ |
| - Current consumption | Current output 4 ... 20 mA , 2-wire: signal current | Current output 4 ... 20 mA
 2-wire: signal current,
 Current output 4 ... 20 mA
 3-wire: < 8 mA ,
 Voltage output: < 8 mA |
| - Supply voltage | DC $10 \ldots 30 \mathrm{~V}$ for current output | DC $10 \ldots 30 \mathrm{~V}$ for current output DC $14 \ldots 30 \mathrm{~V}$ for voltage output |
| - Burden | $\leq(\mathrm{UB}-10 \mathrm{~V}) / 0.024 \mathrm{~A}$ for current output
 $>10 \mathrm{k} \Omega$ for voltage output | |
| - Response time | $\leq 2 \mathrm{~ms}\left(\text { within } 10 \ldots 90 \% \mathrm{~F}_{\text {nom }}\right)^{2)}$ | |
| Electrical connection | Circular connector M12 x 1, 4-pin | |
| Material of measuring device | Stainless steel, ultrasonically tested 3.1 material (optional 3.2) | |
| Optional | Certificates, strength verifications, 3D-CAD files (STEP, IGES) on request | |

[^1]
Dimensions in mm

Version $1 . . .30 \mathrm{kN}$

Nominal load in kN	A	B	D	E	F	G	H	J	K1	K2	K3	L	M	N $-\mathbf{0 . 1}$	Ball \mathbf{R}	MA $(\mathbf{N m})$	Nominal deflection
$\mathbf{1} \ldots \mathbf{3}$	25.2	22	24	23	4.3	1.5	6	59	43	62	66	70	M12	9.5	60	60	<0.5
$\mathbf{5}$	25.2	22	24	23	4.3	1.5	6	59	43	62	66	70	M12	9.5	60	60	<0.5
$\mathbf{1 0}$	25.2	22	31	23	4.3	1.5	6	59	43	62	66	77	M12	9.5	80	60	<0.5
$\mathbf{2 0}$	25.2	26	33	34	3.8	2	10	59	43	62	66	101	M20 $\times 1.5$	17	100	300	<0.1
$\mathbf{3 0}$	27.5	27.5	40	34	3.8	2	10	61.5	44	63	67	108	M20 $\times 1.5$	17	120	300	<0.1

Version from 50 kN

Nominal load in kN	C	D	E	F	G	H	K1	K2	K3	L	M	N -0.1	Ball R	MA (Nm)	Nominal deflection
$\mathbf{5 0}$	35	50	40	5	2	12	43	62	66	130	M24 $\times 2$	20	150	500	<0.1
$\mathbf{1 0 0}$	54	54	68	10	3	19.5	44	64	68	190	M39 $\times 3$	34	200	2,500	<0.1

Dimensions in mm

Accessories swivel heads

Nominal load in kN	H	Minimum screw-in depth T
$\mathbf{1 , 2 , 3 , 5}$	148 ± 3	9.5
$\mathbf{1 0}$	155 ± 3	9.5
$\mathbf{2 0}$	219 ± 4	16
$\mathbf{3 0}$	226 ± 4	16
$\mathbf{5 0}$	276 ± 4	19.5
$\mathbf{1 0 0}$	405 ± 7	31

Nominal load in kN	H	Minimum screw-in depth T
$\mathbf{2}$	148 ± 3	
$\mathbf{5}$		9.5
$\mathbf{1 0}$	155 ± 3	
$\mathbf{2 0}$	219 ± 4	16
$\mathbf{3 0}$	226 ± 4	19.5
$\mathbf{5 0}$	276 ± 4	31
$\mathbf{1 0 0}$	405 ± 7	36
$\mathbf{2 0 0}$	466 ± 13	45
$\mathbf{3 0 0}$	568 ± 11	51
$\mathbf{5 0 0}$	665 ± 13	

Nominal load in kN	Weight in kg	A	B	$\varnothing \mathrm{D}_{1}$	$\varnothing \mathrm{D}_{2}$	F	G	GL	\varnothing K	L	M	SW
0 ... 10	0.115	32	16	12 H 7	15.4	50	M12	22	22	55	12	19
$20 \ldots 30$	0.415	50	25	20 H 7	24.3	77	M 20×1.5	33	34	102	18	32
50	0.750	60	31	25H7	29.6	94	M 24×2	42	42	124	22	36
100	2	92	28	$40-0.012$	45	142	M 39×3	65	65	188	23	55

Electrical connection analogue output

Analogue output 4 ... 20 mA , 2-wire
Circular connector M12 $\times 1,4$-pin

Analogue output DC $0 \ldots 10 \mathrm{~V}$, 3-wire
Circular connector M12 x 1, 4-pin

Standard version

	$4 \ldots 20 \mathrm{~mA}$	$4 \ldots 20 \mathrm{~mA}$	$0 \ldots 10 \mathrm{~V}$
	2-wire	3-wire	3-wire
Supply: UB+	1	1	1
Supply: OV/UB-	3	3	3
Signal: S+	1	4	4
Signal: S-	3	3	3
Screen Θ	Case	Case	Case

Cable outlet		
Cable colour	3-wire	3-wire
Brown	UB+/S+	UB+
White	-	-
Blue	OV/S-	OV/S-
Black	-	S+

Only when using the standard tecsis cable, e.g. EZE53X011016

Pin assignment version ATEX/IECEx

	ATEX Ex ib, 4 ... 20 mA , 2-wire	$\begin{aligned} & \text { ATEX Ex d, } \\ & 4 \ldots 20 \mathrm{~mA} \text {, } \\ & \text { 2-wire } \end{aligned}$	ATEX Ex d, 4 ... 20 mA , 3-wire
Supply: UB+	1	1	1
Supply: OV/UB-	3	3	3
Signal: S+	1	1	4
Signal: S-	3	3	3
Screen Θ	Case	Case	Case

Cable outlet		
Cable colour	2-wire	3-wire (only Ex d)
Brown	UB+/S+	UB+
White	-	-
Blue	OV/S-	OV/S-
Black	-	S+

Only when using the standard tecsis cable, e.g. EZE53X011016

Pin assignment version SIL 3 in accordance with EN 62061:2005

	$\begin{aligned} & 4 \ldots 20 \mathrm{~mA} \text {, } \\ & \text { 2-wire } \end{aligned}$	$\begin{aligned} & 4 \ldots 20 \mathrm{~mA} \text {, } \\ & \text { 3-wire } \end{aligned}$	$\begin{aligned} & 0 \ldots 10 \mathrm{~V} \text {, } \\ & \text { 3-wire } \end{aligned}$
Supply: UB+	1	1	1
Supply: OV/UB-	3	3	3
Relay: UR+	2	2	2
Relay UR-	4	3	3
Signal: S+	1	4	4
Signal: S-	3	3	3
Screen Θ	Case	Case	Case

Only when using the standard tecsis cable, e.g. EZE53X011016

Pin assignment, analogue output, redundant, opposing

2-connector variant, for example, in combination with ELMS1 overload protection (F53S1).
Version in accordance with requirements for functional safety per 2006/42/EC Machinery Directive.

	$4 \ldots 20 \mathrm{~mA} / \mathbf{2 0} \ldots 4 \mathrm{~mA}$ (redundant)	
	Connector 1	Connector 2
Supply: UB+	1	1
Supply: OV/UB-	3	3
Signal: channel1	4	-
Signal: channel 2	-	4
Screen Θ	Case	Case

Circular connector
M $12 \times 1,4$-pin

Pin assignment, analogue output, with MIL connector

Pin assignment CANopen ${ }^{\circledR}$

The cable shield is connected with the GND of the load cell. With the accessory cable, the cable shield is connected with the knurled nut and, thus, with the GND of the load cell. When extending, only shielded and low-capacitance cable should be used. The permitted maximum and minimum lengths of cable are defined in ISO 11898-2. Care should be taken also to ensure a high-quality connection of the shielding.

Screen $)^{-}$	1
UB+ (CAN V+)	2
UB- (CAN GND)	3
Bus signal CAN-High	4
Bus signal CAN-Low	5

Short description of SIL 3 electronics

$4 \ldots 20 \mathrm{~mA}$ or 0 ... 10 V amplifier electronics for SIL 3 applications with 2-channel computer control (approval through TÜV Süddeutschland, only for applications in stage technology).

Load cells, which are based on strain gauges, operate with four variable resistors (R1 ... R4) connected to a Wheatstone bridge.
Through the deformation of the measuring body the respective opposite resistors are either lengthened or

The switching of the resistor R7 causes a defined, always consistent, unbalancing voltage of the zero point (diagonal voltage) of the Wheatstone bridge. An external control unit, independent of the load cell (2-channel for safety reasons), can now activate relay A which changes the output signal of the force transducer by a defined value. If the expected
compressed in the same way. This results in an unbalanced bridge and a diagonal voltage U0. In the context of the checking of the subsequent amplifier switching and the subsequent signal direction, the test resistance R7 is now important. This is switched via the relay contact (a), parallel to the resistor R5, as soon as the excitation voltage Ur is on the relay A .
change in output signal occurs, then it can be assumed that the entire signal path from the Wheatstone bridge, via the amplifier to the output is functioning correctly. If this does not occur, then it can be concluded that there is a fault in the signal path.

Signals of the SIL electronics

With a fixed, set signal jump of, for example, 4 mA , then, in any operating state, the test cycle can be triggered by activating the test relay. The upper measuring range limit of

20 mA will never be reached and thus the testing of the signal jump is enabled.

WIKA Alexander Wiegand SE \& Co. KG

[^0]: ${ }^{1)}$ Dependent upon the application-specific selected geometry CANopen ${ }^{\circledR}$ and $\mathrm{CiA}{ }^{\circledR}$ are registered community trade marks of CAN in Automation e.V.
 ${ }^{2)}$ Other response times are realisable upon request.

[^1]: 1) The load cell with ignition protection type "ib" should only be powered using galvanically isolated repeater power supplies

 Suitable repeater power supplies can be offered as an option e.g. EZE08X030003
 2) Dependent upon the application-specific selected geometry CANopen® and $\mathrm{CiA} ®$ are registered community trade marks of CAN in Automation e.V.
 3) Other SIL shifts are realisable upon request.
 4) Other response times are realisable upon request

